当前位置:首页 > 高等数学(工专)(00022) > 正文内容

设f(x)=x(ex-1)/ex+1,证明:f(x)是偶函数.

高老师2年前 (2024-03-27)高等数学(工专)(00022)16

设f(x)=x(ex-1)/ex+1,证明:f(x)是偶函数.

证明:f(x)的定义域是(-∞,+∞),并且 f(-x)=-x(e-x-1)/e-x+1=-x•(1/ex-1)/(1/ex+1) =-x•[(1-ex/ex)/(1+ex)/ex] =x(ex-1)/(ex+1)=f(x) 所以f(x)为偶函数.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/947905.html

分享给朋友: