当前位置:首页 > 高等数学(工专)(00022) > 正文内容

讨论反常积分∫e+∞的敛散性,其中k为一常数.

高老师2年前 (2024-03-27)高等数学(工专)(00022)8

讨论反常积分∫e+∞的敛散性,其中k为一常数.

e+∞(1/xlnkx)dx=∫e+∞(1/lnkx)dlnx= {[1/(-k+1)]x-k+1|e+∞ k≠1 {ln(lnx)|e+∞ k=1 所以 当k=1时 ∫e+∞(1/xlnkx)=limb→+∞[ln(lnb)-0]=+∞ 当k>1时∫e+∞(1/xlnkx)dx=limb→+∞eb(1/xlnkx)dx =limb→+∞[b1-k/(1-k)-e1-k/(1-k)] =e1-k/(k-1)+limb→+∞1/(1-k)•(1/bk-1) =e1-k/(k-1) 当k<1时 ∫e(1/xlnkx)dx =limb→+∞eb(1/xlnkx)dx =limb→+∞[b1-k/(1-k)-e1-k/(1-k) 因此,当k>1时收敛,当k≤1时发散.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/946701.html

分享给朋友: