当前位置:首页 > 高等数学(工专)(00022) > 正文内容

求下列反常积分的值:
(1)∫0+∞xe-x2dx;
(2)∫-∞+∞[1/(x2+2x+2)]dx;
(3)∫1+∞dx/x(1+x2);
(4)∫+∞2/π(1/x2)sin(1

高老师2年前 (2024-03-27)高等数学(工专)(00022)11

求下列反常积分的值:
(1)∫0+∞xe-x2dx;
(2)∫-∞+∞[1/(x2+2x+2)]dx;
(3)∫1+∞dx/x(1+x2);
(4)∫+∞2/π(1/x2)sin(1/x)dx.

(1)∫0+∞xe-x2dx =1/2∫0+∞e-x2dx2 =-(1/2)e-x2|0+∞ =1/2 (2)∫-∞+∞[1/(x2+2x+2)]dx =∫-∞+∞1/[1+(x+1)]2(x+1) =arctan(x+1)|-∞+∞ =π (3)∫1+∞dx/x(1+x2) =∫1+∞(1/x-x/(1+x)2)dx =lnx√(x2+1)|1+∞ =(1/2)ln2. (4)∫2/π+∞(1/x2)sin(1/x)dx =∫2/π+∞sin(1/x)d(1/x) =cos(1/x)|2/π+∞ =1

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/946607.html

分享给朋友: