当前位置:首页 > 高等数学(工专)(00022) > 正文内容

设f(x)=
{[(1+x)1/x-e]/x,x≠0,
{α,x=0
在x=0处连续,试求α的值.

高老师2年前 (2024-03-27)高等数学(工专)(00022)8

设f(x)=
{[(1+x)1/x-e]/x,x≠0,
{α,x=0
在x=0处连续,试求α的值.

limx→0f(x)=limx→0[(1+x)1/x-e]/x =limx→0(eln(1+x)/x-e)/x limx→0ln(1+x)/x应用洛必达法则,有 limx→0ln(1+x)/x=1/(1+x)=1 所以 原式=limx→0[(e1-e)/x]=0 因为 f(x)在x=0处连续 所以 limx→0f(x)=f(0),即α=0.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/946557.html

分享给朋友: