当前位置:首页 > 线性代数(02198) > 正文内容

设A为正定矩阵,证明伴随矩阵A*也为正定矩阵.

高老师2年前 (2024-03-27)线性代数(02198)13

设A为正定矩阵,证明伴随矩阵A*也为正定矩阵.

证明:因为A正定,所以A的特征值λ1,λ2,…,λn均大于零,且|A|>0,而A的伴随矩阵A*的特征值分别为|A|/λ1,|A|/λ2,…,|A|/λn,易知A*的特征值也均大于零,所以A*也正定.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/739095.html

分享给朋友: