设图G有n个顶点,n+1条边,证明:G中至少有一个顶点的度数大于等于3。
用反证法。假设图G有n个顶点,n+1条边,且G中每个顶点的度数都小于等于2,由图的顶点度数与边数的关系得,2(n+1)=2n+2≤2n,而2n+2≤2n是个矛盾式,所以假设不成立,原命题成立。
扫描二维码免费使用微信小程序搜题/刷题/查看解析。
版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。
本文链接:https://doc.20230611.cn/post/430479.html
上一篇:设连续型随机变量x的概率密度为f(x)={x/2,0﹤x﹤2,0,其他P{-1≤X≤1}=_____.()
下一篇:下列属于间接访谈方法的有( )。