设H是G的非空子集,则 是群 的子群当且仅当对任意a,b∈H有a·b-1∈H。
(P90)证明:必要性是显然的。现证充分性:因为H非空,故有b∈H,按已知条件,则有b·b-1∈H,即e∈H。任取a∈H,由e∈H,a∈H,则有e·a-1=a-1∈H任意a,b∈H,类似上面证明有b-1∈H,由已知条件得a·(b-1)-1=a·b∈H已知H是G的非空子集,由上得证(H,·> 是群 的子群。
扫描二维码免费使用微信小程序搜题/刷题/查看解析。
版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。
本文链接:https://doc.20230611.cn/post/429944.html
上一篇:试论我国失业保险制度存在的主要问题,并给出完善失业保险制度的思路。
下一篇:公式∀x(A(x)⋀∃yB(y))→C(x)中∃y的辖域是()。