设z=xy,而x=sint,y=cos,求dz/dt.
∂z/∂x=(x y)′x,=yxy-1,∂z/∂y=(xy)′y=xylnx dx/dt=(sint)′=cost,(dy/dt)=(cost)′=-sint 所以dz/dt=∂z/∂x•dx/dt+∂z/∂y•dy/dt =yxy-1•cost+xylnx•(-sint) =cos2t•(sint)cost-1-(sint)cost+1•lnsint =(sint)cost-1[cos2t-(sint)2•lnsint]
扫描二维码免费使用微信小程序搜题/刷题/查看解析。
版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。