设二维随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=(1/50π)e(x2+y2)/50
证明X与Y相互独立.

高老师2年前 (2024-03-26)概率论与数理统计(经管类)(04183)10

设二维随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=(1/50π)e(x2+y2)/50
证明X与Y相互独立.

f x(x)=∫+∞-∞f(x,y)dy= ∫+∞-∞(1/50π)ex2/50•e-(y2/50)dy =(1/50π)e-(x2/50)∫+∞-∞e-(y2/50)dy =(√2/10√π)e-(x2/50=(1/5√2π)e-(x2/50 fY(y)=∫+∞-∞f(x,y)dx=∫+∞-∞ (1/50π)e-(x2/50)∫+∞-∞e-(y2/50)dx =(1/50π)e-(y2/50)∫+∞-∞e-(x2/50)dx= (1/5√2π)e-(y2/50 ∴f(x,y)=fX(x)•fY(y) 因此X与Y相互独立.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/272720.html

分享给朋友: