设y=√(x2-1)lnx-arctan√(x2-1),求y(√5).
y'=2xlnx/2√(x2-1)+√(x2-1)•1/x-1/{1+[√(x2-1)]2}•2x/[2√(x2-1)] =xlnx/√(x2-1)+√(x2-1)/x-1/[x√(x2-1)] y'(√5)=(√5ln√5)/2+2/√5-1/(2√5)=(√5/4)ln5+(3/10)√5
扫描二维码免费使用微信小程序搜题/刷题/查看解析。
版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。