当前位置:首页 > 高等数学(一)(00020) > 正文内容

设函数z=xy+f(u),u=y2-x2,其中f是可微函数.证明:y(∂z/∂x)+x(∂z/∂y)=x2+y2

高老师2年前 (2024-03-25)高等数学(一)(00020)9

设函数z=xy+f(u),u=y2-x2,其中f是可微函数.证明:y(∂z/∂x)+x(∂z/∂y)=x2+y2

证明:因为∂z/∂x=y-2xf′(u),∂z/∂y=x+2yf′(u), 所以y(∂z/∂x)+x(∂z/∂y)=y2=y2-2xyf′(u)+x2+2xyf′(u)=x2 +y2

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/53780.html

分享给朋友: