当前位置:首页 > 概率论与数理统计(二)(02197) > 正文内容

已知二维随机变量(X,Y)的联合概率密度
f(x,y)=
{Cxy,0≤x﹤≤1,0≤y≤1;
0,其他
求:(1)常数C;
(2)(X,Y)的联合分布函数;
(3)P(X﹤Y).

高老师2年前 (2024-03-26)概率论与数理统计(二)(02197)12

已知二维随机变量(X,Y)的联合概率密度
f(x,y)=
{Cxy,0≤x﹤≤1,0≤y≤1;
0,其他
求:(1)常数C;
(2)(X,Y)的联合分布函数;
(3)P(X﹤Y).

(1)由(X,Y)的联合概率密度的性质,有 ∫+∞-∞+∞-∞f(x,y)dxdy =C∫1010xydxdy=C/4=1, 所以C=4. (2)当x﹤0或y﹤0时, F(x,y)=p(X≤x,Y≤y)=0; 当0≤x﹤1,0≤y﹤1时, F(x,y)=∫x-∞y-∞(u,υ)dudυ =4∫x0udu∫y0υdυ =x2y2; 当0≤x<1,y≥1时, F(x,y)=P(X≤x,Y≤y)=4∫x0udu∫y0υdυ=x2; 当x≥1,0≤Y<1时, F(x,y)=P(X≤x,Y≤y)=4∫10udu∫y0υdυ=y2; 当x≥1,y≥1时, F(x,y)=P(X≤x,Y≤y)=4∫10udu∫10υdυ=1; 所以(X.Y)的分布函数 F(x,y)= {0, x﹤0<或y﹤0; x2y2, 0≤x﹤1,0≤y﹤1; x2,0≤x﹤1,y≥1; y2, x≥1,0≤y≤1; 1, x≥1, y≥1. (3)P(x﹤y)=∫∫x﹤yf(x,y)dxdy =∫∫0≤x﹤y﹤14xydxdy =4∫10ydy∫y0xdx =1/2

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/429260.html

分享给朋友: