设A是3阶反对称矩阵,证明
- 线性代数(经管类)(04184) - 专业知识收录平台">
设A是3阶反对称矩阵,则A=-A,|A|=|-A|,又| A|=|A|,所以|A|=(-1)3|A|=-|A|,因此|A|=0。
扫描二维码免费使用微信小程序搜题/刷题/查看解析。
版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。
本文链接:https://doc.20230611.cn/post/276572.html
上一篇:通过()的测量不仅能了解结构的(),而且可以知道结构的弹性或非弹性工作性质。
下一篇:二进制码具有抗干扰能力强、易于产生等优点,下列采用二进制码的技术是