当前位置:首页 > 线性代数(经管类)(04184) > 正文内容

求矩阵A的特征值与特征向量
A=
(12
32)

高老师2年前 (2024-03-26)线性代数(经管类)(04184)5

求矩阵A的特征值与特征向量
A=
(12
32)

|λI-A| = |λ-1 -2| |-3 λ-2| =(λ+1)(λ-4) 所以λ1=-1,λ2=4是特征值。 对于λ1=-1,解齐次线性方程组(-I-A)X=0求出基础解系数 a1= (-1 1).所以,属于λ1=-1的特征向量为ka1,k≠0. 对于λ2=4,解齐次线性方程组(4I-A)X=0,求出基础解系 a2= (2 3). 所以属于λ2=4的特征向量为ka2,k≠0.

扫描二维码免费使用微信小程序搜题/刷题/查看解析。

版权声明:本文由翰林刷题小程序授权发布,如需转载请注明出处。

本文链接:https://doc.20230611.cn/post/276301.html

分享给朋友: